Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence.

نویسندگان

  • Sébastien Lavoué
  • Masaki Miya
  • Matthew E Arnegard
  • Peter B McIntyre
  • Victor Mamonekene
  • Mutsumi Nishida
چکیده

The relationship between genotypic and phenotypic divergence over evolutionary time varies widely, and cases of rapid phenotypic differentiation despite genetic similarity have attracted much attention. Here, we report an extreme case of the reverse pattern--morphological stasis in a tropical fish despite massive genetic divergence. We studied the enigmatic African freshwater butterfly fish (Pantodon buchholzi), whose distinctive morphology earns it recognition as a monotypic family. We sequenced the mitochondrial genome of Pantodon from the Congo basin and nine other osteoglossomorph taxa for comparison with previous mitogenomic profiles of Pantodon from the Niger basin and other related taxa. Pantodon populations form a monophyletic group, yet their mitochondrial coding sequences differ by 15.2 per cent between the Niger and Congo basins. The mitogenomic divergence time between these populations is estimated to be greater than 50 Myr, and deep genetic divergence was confirmed by nuclear sequence data. Among six sister-group comparisons of osteoglossomorphs, Pantodon exhibits the slowest rate of morphological divergence despite a level of genetic differentiation comparable to both species-rich (e.g. Mormyridae) and species-poor (e.g. Osteoglossidae) families. Morphological stasis in these two allopatric lineages of Pantodon offers a living vertebrate model for investigating phenotypic stability over millions of generations in the face of profound fluctuations in environmental conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term morphological stasis maintained by a plant-pollinator mutualism.

Many major branches in the Tree of Life are marked by stereotyped body plans that have been maintained over long periods of time. One possible explanation for this stasis is that there are genetic or developmental constraints that restrict the origin of novel body plans. An alternative is that basic body plans are potentially quite labile, but are actively maintained by natural selection. We pr...

متن کامل

Why coelacanths are not 'living fossils': a review of molecular and morphological data.

A series of recent studies on extant coelacanths has emphasised the slow rate of molecular and morphological evolution in these species. These studies were based on the assumption that a coelacanth is a 'living fossil' that has shown little morphological change since the Devonian, and they proposed a causal link between low molecular evolutionary rate and morphological stasis. Here, we have exa...

متن کامل

Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines

The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the e...

متن کامل

Interspecies Insertion Polymorphism Analysis Reveals Recent Activity of Transposable Elements in Extant Coelacanths

Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossi...

متن کامل

Heads or tails: staged diversification in vertebrate evolutionary radiations.

Adaptive radiations, bouts of morphological divergence coupled with taxonomic proliferation, underpin biodiversity. The most widespread model of radiations assumes a single round, or 'early burst', of elevated phenotypic divergence followed by a decline in rates of change or even stasis. A vertebrate-specific model proposes separate stages: initial divergence in postcranial traits related to ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 278 1708  شماره 

صفحات  -

تاریخ انتشار 2011